Hankel operators on Bergman spaces.

Omar El-Fallah joint work with M. Bourass, I. Marrhich and H. Naqos

Laboratory of Mathematical Analysis and Applications (LAMA) (CeReMaR) Mohammed 5 University in Rabat

Interuniversity Geometry Seminar

2022-04-08

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

Let $Hol(\mathbb{D})$ be the space of all holomorphic functions on the unit disc \mathbb{D} in the complex plane \mathbb{C} and let dA denote the normalized Lebesgue area measure on \mathbb{D} . The standard Bergman space A_{α}^2 , $\alpha > -1$, is given by

$$A_{\alpha}^{2} = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \|f\|_{\alpha} := \left(\int_{\mathbb{D}} |f(z)|^{2} dA_{\alpha}(z) \right)^{1/2} < \infty \right\}$$

where $dA_{\alpha}(z) := (\alpha + 1)(1 - |z|^2)^{\alpha} dA(z)$. Recall that A_{α}^2 is a reproducing Kernel Hilbert space with the kernel

$$K(z,w) = rac{1}{(1-\overline{w}z)^{\alpha+2}}, \quad z,w \in \mathbb{D}.$$

The orthogonal projection from $L^2_{\alpha} := L^2(\mathbb{D}, dA_{\alpha})$ onto A^2_{α} will be denoted by P_{α} .

$$P_{\alpha}f(z) = \int_{\mathbb{D}} f(w)K(z,w)dA_{\alpha}(w) = \int_{\mathbb{D}} \frac{f(w)}{(1-\overline{w}z)^{\alpha+2}}dA_{\alpha}(w).$$

The orthogonal projection from $L^2_{\alpha} := L^2(\mathbb{D}, dA_{\alpha})$ onto A^2_{α} will be denoted by P_{α} .

$$P_{\alpha}f(z) = \int_{\mathbb{D}} f(w) \mathcal{K}(z, w) dA_{\alpha}(w) = \int_{\mathbb{D}} \frac{f(w)}{(1 - \overline{w}z)^{\alpha+2}} dA_{\alpha}(w).$$

Let $\phi\in A^2_\alpha.$ The linear transformation $\textit{H}_{\overline{\varphi}}=\textit{M}_{\overline{\varphi}}-\textit{P}_\alpha\textit{M}_{\overline{\varphi}}$

$$H_{\overline{\phi}}f = \overline{\phi}f - P_{\alpha}(\overline{\phi}f),$$

is densely defined operator from A^2_α into $L^2_\alpha \ominus A^2_\alpha$ which is called the (big) Hankel operator with symbol $\overline{\phi}$. An integral formula of $H_{\overline{\phi}}$ is

$$\begin{array}{lll} H_{\overline{\phi}}f(z) & = & \overline{\phi}(z)\langle f, K_z \rangle - \langle \overline{\phi}f, K_z \rangle \\ \\ & = & \int_{\mathbb{D}} \frac{\overline{\phi(z)} - \overline{\phi(w)}}{(1 - \overline{w}z)^{\alpha + 2}} f(w) dA_{\alpha}(w), \quad z \in \mathbb{D}. \end{array}$$

Axler ('86) proved that $H_{\overline{\phi}}$ is bounded on A_{α}^2 if and only if ϕ belongs to the Bloch space \mathcal{B}

$$\mathcal{B} := \{ \phi \in \operatorname{Hol}(\mathbb{D}) : \sup_{|z| < 1} (1 - |z|^2) |\phi'(z)| < \infty \}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Axler ('86) proved that $H_{\overline{\phi}}$ is bounded on A_{α}^2 if and only if ϕ belongs to the Bloch space \mathcal{B}

$$\mathcal{B} := \{ \phi \in \operatorname{Hol}(\mathbb{D}) : \sup_{|z| < 1} (1 - |z|^2) |\phi'(z)| < \infty \}$$

And $\textit{H}_{\bar{\phi}}$ is compact on A^2_{α} if and only if ϕ belongs to the little Bloch space \mathcal{B}_0

$$\mathcal{B}_0:=\{\phi\in \operatorname{Hol}(\mathbb{D}): \lim_{|z|\to 1^-}(1-|z|^2)|\phi'(z)|=0\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Axler ('86) proved that H_{ϕ} is bounded on A_{α}^2 if and only if ϕ belongs to the Bloch space \mathcal{B}

$$\mathcal{B} := \{ \phi \in \operatorname{Hol}(\mathbb{D}) : \sup_{|z| < 1} (1 - |z|^2) |\phi'(z)| < \infty \}.$$

And $H_{\overline{\phi}}$ is compact on A^2_{α} if and only if ϕ belongs to the little Bloch space \mathcal{B}_0

$$\mathcal{B}_0 := \{ \phi \in \operatorname{Hol}(\mathbb{D}) : \lim_{|z| \to 1^-} (1 - |z|^2) |\phi'(z)| = 0 \}.$$

It is also easy to see that $H_{\overline{\phi}}$ is a Hilbert Schmidt operator if and only if $\phi \in \mathcal{D}$, where

$$\mathcal{D} := \{ \phi \in \operatorname{Hol}(\mathbb{D}) : \phi' \in L^2(\mathbb{D}) \},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

is the Dirichlet space.

Idea of the proof :

The function
$$u_f(z) = \int_{\mathbb{D}} f(w) \frac{(1-|w|^2)^{1+\alpha}}{(1-\bar{z}w)^{1+\alpha}} dA(w)$$
 satisfies $\overline{\partial} u_f = f$.
We have
 $\overline{\partial} H_{\overline{\Phi}}(f) = \overline{\partial} (\overline{\Phi} f - P_{\alpha}(\overline{\Phi})) = \overline{\phi'} f \quad (\star),$

and $H_{\overline{\phi}}(f)$ is the minimal solution (in L^2_{α}) of (*). Then

$$\|H_{\overline{\phi}}(f)\|^2 \lesssim \int_{\Omega} |f(z)|^2 |\phi'(z)|^2 (1-|z|^2)^2 (z) dA_{\alpha}(z) = \|J_{\mu_{\phi}}f\|^2,$$

where

$$d\mu_{\phi}(z) = (1 - |z|^2)^2 |\phi'(z)|^2 dA_{\alpha}(z),$$

and $J_{\mu_{\phi}}$ is the embedding operator from A_{α}^2 into $L^2(\mu_{\phi})$.

For the converse, it suffices to remark that

$$(H_{\overline{\phi}}K_a)(z) = (\overline{\phi}(z) - \overline{\phi}(a))K_a(z), \quad z, a \in \Omega.$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

1988, Arazy, Fisher and Peetre proved that if p > 1, $H_{\overline{\phi}} \in S_p$ if and only if $\phi \in \mathcal{B}_p$, where

$$\mathcal{B}_{p}:=\{\phi\in \operatorname{Hol}(\mathbb{D}): \int_{\mathbb{D}}(1-|z|^{2})^{p}|\phi'(z)|^{p}\frac{dA(z)}{(1-|z|^{2})^{2}}<\infty\}$$

is a Besov space.

▲□▶▲圖▶★園▶★園▶ 園 の�?

1988, Arazy, Fisher and Peetre proved that if p > 1, $H_{\bar{\phi}} \in S_p$ if and only if $\phi \in \mathcal{B}_p$, where

$$\mathcal{B}_{p} := \{ \phi \in \mathrm{Hol}(\mathbb{D}) : \int_{\mathbb{D}} (1 - |z|^{2})^{p} |\phi'(z)|^{p} \frac{dA(z)}{(1 - |z|^{2})^{2}} < \infty \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

is a Besov space.

They also proved that if $H_{\overline{\varphi}} \in S_1$, then $H_{\overline{\varphi}} = 0$, that is $\phi = cst$.

1988, Arazy, Fisher and Peetre proved that if p > 1, $H_{\dot{\phi}} \in S_{\rho}$ if and only if $\phi \in \mathcal{B}_{\rho}$, where

$$\mathcal{B}_{\mathcal{P}}:=\{\phi\in\mathrm{Hol}(\mathbb{D}):\int_{\mathbb{D}}(1-|z|^2)^{
ho}|\phi'(z)|^{
ho}rac{d\mathcal{A}(z)}{(1-|z|^2)^2}<\infty\}$$

is a Besov space.

They also proved that if $H_{\overline{\varphi}} \in S_1$, then $H_{\overline{\varphi}} = 0$, that is $\phi = cst$.

On the other hand they proved that if $\phi'' \in L^1(dA)$ then

$$\sigma_n(H_{\overline{\phi}}) := \sum_{k=1}^n s_k(H_{\overline{\phi}}) = O(\log(n+2)).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1988, Arazy, Fisher and Peetre proved that if p > 1, $H_{\overline{\phi}} \in S_p$ if and only if $\phi \in \mathcal{B}_p$, where

$$\mathscr{B}_{\mathcal{P}}:=\{\phi\in \operatorname{Hol}(\mathbb{D}): \int_{\mathbb{D}}(1-|z|^2)^{
ho}|\phi'(z)|^{
ho}rac{d\mathcal{A}(z)}{(1-|z|^2)^2}<\infty\}$$

is a Besov space.

They also proved that if $H_{\overline{\phi}} \in S_1$, then $H_{\overline{\phi}} = 0$, that is $\phi = cst$.

On the other hand they proved that if $\phi'' \in L^1(dA)$ then

$$\sigma_n(H_{\overline{\phi}}) := \sum_{k=1}^n s_k(H_{\overline{\phi}}) = O(\log(n+2)).$$

In this talk we are interested in the behavior of the singular values of $H_{\overline{\Phi}}$;

$$s_n(H_{\overline{\Phi}}) \asymp ?$$
 (in terms of Φ).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Weighted Bergman spaces

Let Ω be a domain of \mathbb{C} . We denote by $\operatorname{Hol}(\Omega)$ the class of all holomorphic functions on Ω . Let $\omega : \Omega \to (0,\infty)$ be a continuous weight on Ω .

The weighted Bergman space associated with ω is given by

$$A_{\omega}^{2} = \{f \in \operatorname{Hol}(\Omega): \|f\|_{\omega} = \left(\int_{\Omega} |f(z)|^{2} dA_{\omega}(z)\right)^{1/2} < \infty\},$$

where $dA_{\omega}(z) = \omega(z) dA(z)$.

 A^2_{ω} is a reproducing Kernel space. The Kernel of A^2_{ω} will be denoted by K. The Hankel operator $H_{\overline{\phi}}$, acting on A^2_{ω} , induced by $\phi \in Hol(\Omega)$ is given by

$$H_{\overline{\phi}}(f) = \overline{\phi}f - P_{\omega}(\overline{\phi}f).$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

We suppose in the sequel that ${\it H}_{\bar{\varphi}}$ is densely defined on ${\rm A}^2_{\omega}.$

The class of weights \mathcal{W} .

Let Ω be a domain (bounded or not) of \mathbb{C} and let $\partial \Omega$ denotes the boundary of Ω .

Let $\partial_{\infty}\Omega = \partial\Omega$ if Ω is bounded and $\partial_{\infty}\Omega = \partial\Omega \cup \{\infty\}$ if Ω is not bounded.

In what follows, we suppose that the kernel K of A_{ω}^2 satisfies

$$\lim_{z \to \partial_{\infty} \Omega} \|K_z\| = \infty \tag{1}$$

For every
$$\zeta \in \Omega$$
, $|K(\zeta, z)| = o(||K_z||)$ $(z \to \partial_{\infty} \Omega)$. (2)

Let

$$au^2(z)(= au^2_\omega(z)):=rac{1}{\omega(z)\|\mathcal{K}_z\|^2}, \ \ (z\in\Omega).$$

We say that $\omega \in \mathcal{W}$ if, in addition, there exist two constants a, C > 0 such that for $z, \zeta \in \Omega$ satisfying $|z - \zeta| \leq a \tau_{\omega}(z)$ we have :

$$\|\mathcal{K}_{z}\|\|\mathcal{K}_{\zeta}\| \leq C|\mathcal{K}(\zeta,z)|, \quad \frac{1}{C}\tau(\zeta) \leq \tau(z) \leq C\tau(\zeta).$$
 (3)

and

$$\tau(z) = O(\min(1, dist(z, \partial_{\infty}\Omega))).$$
(4)

Examples

Standard Bergman spaces on the unit disc \mathbb{D} .

$$A^2_\alpha:=\left\{f\in \textit{H}(\mathbb{D}):\; |f||^2_\alpha=\int_{\mathbb{D}}|f(z)|^2\,\textit{d}A_\alpha(z)<\infty\right\}, \text{ where }\; (\alpha>-1).$$

The reproducing kernel is given by

$$K_z^{\alpha}(w) = rac{1}{(1-z\overline{w})^{2+lpha}}, \qquad \tau(z) \asymp 1-|z|^2.$$

Examples

Standard Bergman spaces on the unit disc D.

$$\mathrm{A}^2_\alpha:=\left\{f\in \mathcal{H}(\mathbb{D}):\; |f||^2_\alpha=\int_{\mathbb{D}}|f(z)|^2\,dA_\alpha(z)<\infty\right\}, \text{ where }\; (\alpha>-1).$$

The reproducing kernel is given by

$$\mathcal{K}_{z}^{\alpha}(w) = rac{1}{(1-z\overline{w})^{2+lpha}}, \qquad \tau(z) \asymp 1-|z|^{2}.$$

Weighted Bergman spaces on D. Let ω = e^{-φ} be such that φ is sub-harmonic weight on D and ¹/_{√Δφ} satisfies a Lipschitz condition. Then ω ∈ W,

$$\tau^2_{\omega}(z) = \frac{1}{\|K_z^{\omega}\|^2 \omega(z)} \asymp \frac{1}{\Delta \varphi(z)}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(Hu, Lv and Schuster, J. F. A. (2019) and references therein)

Examples

Standard Bergman spaces on the unit disc D.

$$\mathrm{A}^2_\alpha:=\left\{f\in \mathcal{H}(\mathbb{D}):\; |f||^2_\alpha=\int_{\mathbb{D}}|f(z)|^2\,dA_\alpha(z)<\infty\right\}, \text{ where }\; (\alpha>-1).$$

The reproducing kernel is given by

$$\mathcal{K}_{z}^{\alpha}(w) = rac{1}{(1-z\overline{w})^{2+lpha}}, \qquad \tau(z) \asymp 1-|z|^{2}.$$

Weighted Bergman spaces on D. Let ω = e^{-φ} be such that φ is sub-harmonic weight on D and ¹/_{√Δφ} satisfies a Lipschitz condition. Then ω ∈ W,

$$au_{\omega}^2(z) = rac{1}{\|\mathcal{K}_z^{\omega}\|^2\omega(z)} symp rac{1}{\Delta \varphi(z)}$$

(Hu, Lv and Schuster, J. F. A. (2019) and references therein)

► Harmonically weighted Bergman spaces on \mathbb{D} . Let $\omega > 0$ and harmonic. One can prove that $\omega \in \mathcal{W}$ and

$$\tau(z) \asymp 1 - |z|^2, \ z \in \mathbb{D}$$

(O.E, I. Marhrhich, H. Mahzouli and H. Naqos J.M.A.A 2018)

Theorem

Let $\omega \in \mathcal{W}.$ We have

- $1. \ H_{\overline{\varphi}} \text{ is bounded on } A^2_{\omega} \text{ if and only if } \sup_{z \in \Omega} \tau(z) |\phi'(z)| < \infty.$
- $2. \ H_{\overline{\varphi}} \text{ is compact on } A^2_{\varpi} \text{ if and only if } \lim_{z \in \Omega \to \partial_{\varpi} \Omega} \tau(z) |\phi'(z)| = 0.$
- 3. Let $p\geq 1.$ Then $H_{\overline{b}}\in S_p(A^2_{\omega})$ if and only if

$$\int_{\Omega} |\phi'(z)|^{p} \tau^{p-2}(z) dA(z) < \infty.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Starting point

Lemma

Let $(a_n)_{n\geq 1}, (b_n)_{n\geq 1}$ be two decreasing sequences such that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$ and that $(n^{\gamma}b_n)$ is increasing for some $\gamma \in (0, 1)$.

Suppose that there exists B > 0 such that

$$\sum_{n\geq 1}h(b_n/B)\leq \sum_{n\geq 1}h(a_n)\leq \sum_{n\geq 1}h(Bb_n),$$

for all increasing convex function h. Then

$$a_n \asymp b_n$$

That is, there exists C > 0 such that

$$b_n/C \leq a_n \leq Cb_n$$
.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

We will use the lemma as follows.

Lemma

Let $p \ge 1$ and let $\rho : [0, +\infty] \to [1, +\infty[$ be an increasing positive function such that $\rho(x)/x^{\gamma}$ is decreasing for some $\gamma \in (0, p)$. Let *T* be a positive compact operator. Suppose that there exists B > 0 such that

$$\sum_{n\geq 1} h\left(\frac{1}{B\rho(n)}\right) \leq Tr(h(T)) = \sum_{n\geq 1} h(\lambda_n(T)) \leq \sum_{n\geq 1} h\left(\frac{B}{\rho(n)}\right),$$

for all increasing functions h such that $h(t^p)$ is convex. Then

 $\lambda_n(T) \simeq 1/\rho(n).$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Toeplitz operators

The Toeplitz operator T_{μ} , acting on A^2_{ω} , induced by a positive Borel measure μ on Ω is given by

$$T_{\mu}f(z) = \int_{\Omega} f(\zeta)K(z,\zeta)\omega(\zeta)d\mu(\zeta).$$

Note that

$$\langle T_{\mu}f,f\rangle = \int_{\Omega} |f(\zeta)|^2 \omega(\zeta) d\mu(\zeta).$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

It is known that for $\omega \in \mathcal{W}$, there exist $B, \delta > 0$ and $(z_n)_n \subset \Omega$ such that

• $(D(z_n, \delta \tau_{\omega}(z_n)))_n$ is a covering of Ω of finite multiplicity.

• $D(z_n, \frac{\delta}{B}\tau_{\omega}(z_n))$ are pairwise disjoint.

Such family $(D(z_n, \delta \tau_{\omega}(z_n)))_n$ is called a Lattice of Ω with respect to ω .

Boundedness and compactness :

Fix a lattice $(R_n)_n$ of Ω with respect to ω . One can see that

•
$$T_{\mu}$$
 is bounded $\iff \mu(R_n)/A(R_n)$ is bounded.

•
$$T_{\mu}$$
 is compact $\iff \mu(R_n)/A(R_n) \rightarrow 0$.

Boundedness and compactness :

Fix a lattice $(R_n)_n$ of Ω with respect to ω . One can see that

•
$$T_{\mu}$$
 is bounded $\iff \mu(R_n)/A(R_n)$ is bounded.

•
$$T_{\mu}$$
 is compact $\iff \mu(R_n)/A(R_n) \rightarrow 0$.

The key of the proof is the following mean inequality

$$|f(\zeta)|^2\omega(\zeta)\lesssim rac{1}{A(R_n)}\int_{bR_n}|f(z)|^2\omega(z)dA(z)\qquad (\zeta\in R_n,b>1),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

with the notation (bD(z,r) = D(z,br)).

If T_{μ} is compact, $(a_n(\mu))_n$ will denote a decreasing rearrangement of $(\mu(R_n)/A(R_n))_n$.

Trace estimates for Toeplitz operators

Theorem (O. E. and M. Elibbaoui 2018)

Let μ be a positive Borel measure on Ω s.t. T_{μ} is compact on A_{Θ}^2 . Let h be increasing, h(0) = 0 and $h(t^p)$ is convex for some $p \ge 1$. Then, there exists B > 1, which depends on ω and p s.t.

$$\sum_{n} h\left(\frac{1}{B}a_{n}(\mu)\right) \leq \sum_{n} h(\lambda_{n}(T_{\mu})) \leq \sum_{n} h(Ba_{n}(\mu)).$$

Trace estimates for Toeplitz operators

Theorem (O. E. and M. Elibbaoui 2018)

Let μ be a positive Borel measure on Ω s.t. T_{μ} is compact on A^2_{ω} . Let h be increasing, h(0) = 0and $h(t^{\rho})$ is convex for some $p \ge 1$. Then, there exists B > 1, which depends on ω and p s.t.

$$\sum_{n} h\left(\frac{1}{B}a_{n}(\mu)\right) \leq \sum_{n} h(\lambda_{n}(T_{\mu})) \leq \sum_{n} h(Ba_{n}(\mu)).$$

As consequence we obtain

Theorem

Let A > 0 and let ρ be an increasing positive function s.t. $\rho(x)/x^A$ is decreasing for some A > 0. Let μ be a positive Borel measure on Ω such that T_{μ} is compact. Then

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1.
$$\lambda_n(T_\mu) = O(1/\rho(n)) \iff a_n(\mu) \asymp O(1/\rho(n)).$$

2.
$$\lambda_n(T_\mu) \simeq 1/\rho(n) \iff a_n(\mu) \simeq 1/\rho(n).$$

Remarks

The growth condition on ρ is, in some sense, necessary. Indeed, let

$$\rho_{\beta,c}(n) = \exp(-c\log^{\beta} n) \quad \beta, c > 0.$$

From Theorem A, it is clear that if $\beta \leq 1$ then

$$\lambda_n(T_\mu) \asymp 1/\rho_{\beta,c}(n) \iff a_n(\mu) \asymp 1/\rho_{\beta,c}(n).$$

While, if $\beta>$ 1 one can construct a Toeplitz operator ${\cal T}_{\mu}$ such that

$$\lambda_n(T_\mu) symp 1/
ho_{eta,c}(n) \quad ext{and} \quad \limsup_{n o \infty} rac{\lambda_n(T_\mu)}{a_n(\mu)} = +\infty.$$

• One can construct two positive Borel measures μ and v on the unit disc \mathbb{D} such that

$$a_n(\mu) = a_n(\nu)$$
 and $\limsup_{n \to \infty} \lambda_n(T_\mu) / \lambda_n(T_\nu) = \infty.$

So, it is somewhat surprising that the behavior of $\lambda_n(T_\mu)$, in our case, depends only on $a_n(\mu)$ and not on the positions of $(R_n(\mu))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへぐ

Trace estimates for Hankel operators

Notations :

$$d\lambda_{\omega}(z) := rac{dA(z)}{ au_{\omega}^2(z)}, \qquad |T| = (T^*T)^{1/2}.$$

Theorem

Suppose that $H_{\bar{0}}$ is compact and let h be an increasing convex function such that h(0) = 0. Then

$$\int_{\Omega} h\left(\frac{1}{B} |\phi'(z)| \tau_{\omega}(z)\right) d\lambda_{\omega}(z) \leq \textit{Tr}\Big(h(|\textit{H}_{\overline{\varphi}}|))\Big) \leq \int_{\Omega} h\left(B |\phi'(z)| \tau_{\omega}(z)\right) d\lambda_{\omega}(z),$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

where the constant B > 0 depends only on ω .

Idea of the proof :

$$\text{Upper estimate}: \qquad \quad \text{Tr}\left(h(|H_{\overline{\varphi}}|))\right) \leq \int_{\mathbb{D}} h\left(B|\phi'(z)|\tau_{\omega}(z)\right) d\lambda_{\omega}(z).$$

We have

$$\overline{\partial} H_{\overline{\phi}}(f) = \overline{\partial} (\overline{\Phi} f - P_{\omega}(\overline{\Phi})) = \overline{\phi'} f \qquad (\star).$$

Then $H_{\overline{\phi}}(f)$ is the minimal solution (in L^2_{ω}) of (*). Hörmander type estimates for $\overline{\partial}$ -equation , imply

$$\|H_{\overline{\phi}}(f)\|^2 \lesssim \int_{\Omega} |f(z)|^2 |\phi'(z)|^2 au_{\omega}^2(z) dA_{\omega}(z).$$

This means that

$$H^*_{\overline{\phi}}H_{\overline{\phi}}\lesssim \mathcal{T}_{\mu_{\phi}}, \hspace{1em} ext{where} \hspace{1em} d\mu_{\phi}(z)= au_{\omega}^2|(z)\phi'(z)|^2 dA_{\omega}(z).$$

Then

$$s_n^2(H_{\overline{\phi}}) \lesssim \lambda_n(T_{\mu_{\phi}}).$$

Lower estimate :

$$\int_{\mathbb{D}} h\left(\frac{1}{B} |\phi'(z)| \tau_{\omega}(z)\right) d\lambda_{\omega}(z) \leq \operatorname{Tr}\left(h(|H_{\phi}|)\right)$$

We have

$$(H_{\overline{\phi}}K_a)(z) = (\overline{\phi}(z) - \overline{\phi}(a))K_a(z), \quad z, a \in \Omega.$$

Then

$$\begin{array}{ll} h(\tau_{\omega}(z)|\phi'(z)|) &\lesssim & \int_{bR_n} \int_{bR_n} h(|\phi(\zeta) - \phi(w)|) \, d\lambda_{\omega}(\zeta) d\lambda_{\omega}(w). \\ &\lesssim & \int_{bR_n} \int_{bR_n} h\left(\frac{|H_{\bar{\phi}}K_{\zeta}(w)|}{|K(\zeta,w)|}\right) d\lambda_{\omega}(\zeta) d\lambda_{\omega}(w) \\ &\lesssim & \int_{bR_n} \int_{bR_n} h\left(\frac{|H_{\bar{\phi}}K_{\zeta}(w)|}{\|K_{\zeta}\|\|K_{w}\|}\right) d\lambda_{\omega}(\zeta) d\lambda_{\omega}(w). \end{array}$$

Let $H_{\overline{\mathbb{Q}}}K_{\zeta}(w) = \sum_{n} s_{n}\overline{f_{n}(\zeta)}g_{n}(w)$. We have

$$h\left(\frac{|H_{\overline{\phi}}K_{\zeta}(w)|}{\|K_{\zeta}\|\|K_{w}\|}\right) \leq h\left(\sum_{k} s_{k} \frac{|f_{k}(\zeta)|}{\|K_{\zeta}\|} \frac{|g_{k}(w)|}{\|K_{w}\|}\right) \leq \frac{1}{2} \sum_{k} \left(\frac{|f_{k}(\zeta)|^{2}}{\|K_{\zeta}\|^{2}} + \frac{|g_{k}(w)|^{2}}{\|K_{w}\|^{2}}\right) h(s_{k}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Combining these inequalities, and after integration we obtain the result.

Consequence

Let $R^+_{\phi,\omega}$ be the decreasing rearrangement of $\tau_\omega |\phi'|$ with respect to $\lambda_\omega.$ Namely,

$$\mathrm{R}^+_{\phi,\omega}(x) := \sup\{t \in (0, \|\tau\phi'\|_{\infty}]: \ \mathrm{R}_{\phi,\omega}(t) \geq x\},\$$

where

$$\mathrm{R}_{\phi,\omega}(t):=\lambda_\omega(\{z\in\Omega:\ au_\omega(z)|\phi'(z)|>t\}).$$

Remark that

$$\int_{\Omega} h\left(|\phi'(z)| \tau_{\omega}(z) \right) d\lambda_{\omega}(z) \asymp \sum_{n} h\left(\mathrm{R}_{\phi,\omega}^{+}(n) \right)$$

Consequence

Let $R^+_{\phi,\omega}$ be the decreasing rearrangement of $\tau_\omega |\phi'|$ with respect to $\lambda_\omega.$ Namely,

$$\mathrm{R}^+_{\phi,\omega}(x) := \sup\{t \in (0, \|\tau\phi'\|_{\infty}]: \ \mathrm{R}_{\phi,\omega}(t) \geq x\},\$$

where

$$\mathrm{R}_{\phi,\omega}(t):=\lambda_\omega(\{z\in\Omega:\ au_\omega(z)|\phi'(z)|>t\}).$$

Remark that

$$\int_{\Omega} h\left(|\phi'(z)| \tau_{\omega}(z) \right) d\lambda_{\omega}(z) \asymp \sum_{n} h\left(\mathrm{R}^{+}_{\phi,\omega}(n) \right)$$

Theorem

Let ρ be an increasing function such that $\rho(x)/x^{\gamma}$ is decreasing for some $\gamma \in (0,1)$ then

$$s_n(H_{\overline{\phi}}) \asymp 1/\rho(n) \iff \mathrm{R}^+_{\phi,\omega}(n) \asymp 1/\rho(n).$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Radial weighted Bergman spaces on the unit disc

The singular values of $H_{\overline{z}}$ will play an important role in the study of the decay of singular values of Hankel operators with anti-analytic symbols. Note that in the radial case we have

$$H_{\mathbb{Z}}^*H_{\mathbb{Z}}(\frac{z^n}{\|z^n\|}) = \left(\frac{\|z^{n+1}\|^2}{\|z^n\|^2} - \frac{\|z^n\|^2}{\|z^{n-1}\|^2}\right)\frac{z^n}{\|z^n\|} =: m_{\omega}(n)\frac{z^n}{\|z^n\|}, \quad n \ge 1.$$

So, the sequence of the singular values of $H_{\mathbb{Z}}$ is exactly the sequence $(\sqrt{m_{\omega}(n)})_{n\geq 1}$.

The standard Bergman spaces A_{α}^2 , which correspond to $\omega_{\alpha}(z) = (1 + \alpha)(1 - |z|^2)^{\alpha}$, with $\alpha > -1$. In this case, we have

$$||z^{n}||_{\omega_{\alpha}}^{2} = \frac{\Gamma(n+1)\Gamma(\alpha+2)}{\Gamma(n+\alpha+2)},$$

and

$$m_{\omega_{\alpha}}(n) = \frac{\alpha+1}{(n+\alpha)(n+\alpha+1)} \sim \frac{\alpha+1}{(n+1)^2}.$$

Then

$$s_n(H_{\overline{z}}) \sim \frac{\sqrt{\alpha+1}}{n+1}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\beta \ge 0$ and let ω be such that $\tau^2_{\omega}(z) \asymp (1-|z|^2)^{2+\beta}$, one can consider for example

$$\omega(z) = (1 - |z|^2)^{\alpha} \exp\left(-(1 - |z|^2)^{-\beta}\right), \quad \alpha > -1.$$

We have

$$\begin{split} \mathbf{R}_{z,\omega}(t) &= &\lambda_{\omega}\{z\in\mathbb{D}:\ \tau^2(z)\geq t\}\\ &\asymp \quad \int_{\{z\in\mathbb{D}:\ \tau^2(z)\geq t\}}\frac{dA}{(1-|z|^2)^{2+\beta}}\\ &\asymp \quad \int_{\{r\in(0,1):\ (1-r)^{2+\beta}\geq t\}}\frac{dr}{(1-r)^{2+\beta}}\\ &\asymp \quad t^{-\frac{2(1+\beta)}{2+\beta}}. \end{split}$$

Then

$$\mathrm{R}^+_{z,\omega}(t) symp rac{1}{t^{1/p}}, \quad ext{where } p = rac{2(1+eta)}{2+eta},$$

and

$$\sqrt{m_{\omega}(n)} = s_n(H_{\overline{z}}) \asymp \frac{1}{n^{1/p}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

We have the following result.

Theorem

Let $\omega\in \mathcal{W}$ be a radial weight. Let ϕ be an analytic function such that $H_{\overline{\phi}}$ is compact. Then

$$s_n(H_{\overline{\phi}}) = o(s_n(H_{\overline{z}})) \implies H_{\overline{\phi}} = 0.$$

Suppose that $au_\omega(z) \asymp (2-|z|^2)^{2+eta}$, then

$$s_n(H_{\overline{\phi}}) = o(1/n^{1/p}) \implies H_{\overline{\phi}} = 0.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here $p = \frac{2(1+\beta)}{2+\beta}$.

Now we are interested in the description of the class of symbols $\boldsymbol{\phi}$ such that

 $s_n(H_{\overline{\phi}}) = O(s_n(H_{\overline{z}})).$

Now we are interested in the description of the class of symbols $\boldsymbol{\phi}$ such that

 $s_n(H_{\overline{\phi}}) = O(s_n(H_{\overline{z}})).$

Theorem

Let $\beta \geq 0$ and let ω such that $\tau^2_\omega(z) \asymp (1-|z|^2)^{2+\beta}.$ Then,

$$s_n(H_{\overline{z}}) \asymp 1/n^{1/p}, \quad p = rac{2(1+\beta)}{2+\beta}$$

$$s_n(H_{\overline{\phi}}) = O(1/n^{1/p}) \quad \Longleftrightarrow \quad \phi' \in H^p.$$

Idea of the proof of : $\phi' \in H^p \implies s_n(H_{\bar{\phi}}) = O(1/n^{1/p})$.

It suffices to prove that $\mathrm{R}^+_{\Phi,\omega}(x) = O(1/x^{\rho})$. That is $\mathrm{R}_{\Phi,\omega}(t) = O(1/t^{\rho})$.

Let U be the non tangential maximal function associated with $|\phi'|$. It satsfies

$$|\phi'(\mathit{re}^{i heta})| \leq U(e^{i heta}) \ a.e.$$
 on $\mathbb T$ and $U \in L^p$.

Then

$$\begin{split} \mathbf{R}_{\Phi,\omega}(t) &= \lambda_{\omega}(\{re^{i\theta} \in \mathbb{D} : \tau_{\omega}(r) | \phi'(re^{i\theta}) | \ge t\}) \\ &\leq \lambda_{\omega}(\{re^{i\theta} \in \mathbb{D} : \tau_{\omega}(r) | U(e^{i\theta}) | \ge t\}) \\ &= \int_{\{re^{i\theta} : \tau_{\omega}(r) | U(e^{i\theta}) | \ge t\}} \frac{dr}{\tau_{\omega}^{2}(r)} d\theta \\ &\leq \int_{\mathbb{T}} \int_{\{r:(1-r)^{1+\beta/2} \ge C \frac{t}{|U(e^{i\theta})|}\}} \frac{dr}{(1-r)^{2+\beta}} d\theta \ \asymp \ \frac{\|U\|_{\rho}^{\rho}}{t^{\rho}}. \end{split}$$

・ロト・日本・モート モー シタク

Assymptotics

Pb : Is it possible to obtain the exact asymptotic behavior of $s_n(H_{\phi})$ for some particular ϕ ? First let $\phi(z) = z$. For a radial weight ω , the sequence of the singular values of $H_{\overline{z}}$ is

$$\left(\left(\frac{||z^{n+1}||^2}{||z^n||^2} - \frac{||z^n||^2}{||z^{n-1}||^2}\right)^{1/2}\right)_n$$

• The standard Bergman space $\omega_{\alpha}(z) = (1 - |z|^2)^{\alpha}$:

$$s_n(H_{\overline{z}}) \sim \frac{\sqrt{\alpha+1}}{n+1}, \ n \to \infty.$$

For the weight ω given by

$$\omega(z) = \exp\left(-\frac{\alpha}{(\log \frac{1}{|z|^2})^{\beta}}
ight), \quad \alpha, \ \beta > 0.$$

Recall that $\tau^2_{\omega}(z) \asymp (1-|z|^2)^{2+\beta}$ and $s_n(H_{\overline{z}}) \asymp \frac{1}{n^{1/\rho}}$, where $p = \frac{2(1+\beta)}{2+\beta}$.

$$||z^{n}||^{2} = \int_{\mathbb{D}} |z|^{2n} \exp\left(-\frac{\alpha}{(\log\frac{1}{|z|^{2}})^{\beta}}\right) dA(z) = \int_{0}^{1} r^{2n} \exp\left(-\frac{\alpha}{(\log\frac{1}{r^{2}})^{\beta}}\right) 2rdr$$
$$= \int_{0}^{+\infty} \exp\left(-(n+1)x - \frac{\alpha}{x^{\beta}}\right) dx.$$

Let $x_n := \left(\frac{\alpha\beta}{n+1}\right)^{1/1+\beta}$ be the minimum of the function $(n+1)x + \frac{\alpha}{x^{\beta}}$. After the change of variable $u = \frac{x-x_n}{x_n}$, we get

$$||z^{n}||^{2} = x_{n} \exp\left(-(n+1)x_{n} - \frac{\alpha}{x_{n}^{\beta}}\right) \int_{-1}^{+\infty} \exp\left(-\frac{\alpha}{x_{n}^{\beta}}h(u)\right) du$$

where $h(u) = \beta u + \frac{1}{(1+u)^{\beta}} - 1$. Then Laplace Theorem, gives

$$\int_{-1}^{+\infty} \exp\left(-th(u)
ight) du \sim \sqrt{rac{2\pi}{th''(0)}}, \quad t o +\infty$$

Finally, we obtain

$$s_n(H_{\overline{z}}) \sim rac{\gamma}{n^{rac{eta+2}{2(eta+1)}}}, \hspace{1em} ext{where} \hspace{1em} \gamma = \sqrt{rac{(lphaeta)^{1/1+eta}}{1+eta}}.$$

・ロト・日本・モート 日 のくぐ

Theorem

Let $\beta \ge 0$ and let $\omega \in \mathcal{W}$ be a radial weight such that $\tau_{\omega}^2(z) \asymp (1-|z|^2)^{2+\beta}$. Then,

$$s_n(H_{\overline{\phi}}) = O(1/n^{1/p}) \quad \iff \quad \phi' \in H^p \qquad \qquad \left(p = \frac{2(1+\beta)}{2+\beta}\right)$$

Moreover, if $s_n(H_{\overline{z}}) \sim \frac{c}{n^{\frac{1}{p}}}$ then $s_n(H_{\overline{\phi}}) \sim \frac{c}{n^{1/p}} \|\phi'\|_p.$

Theorem

Let $\beta \ge 0$ and let $\omega \in \mathcal{W}$ be a radial weight such that $\tau_{\omega}^2(z) \asymp (1-|z|^2)^{2+\beta}$. Then,

$$s_n(H_{\overline{\phi}}) = O(1/n^{1/p}) \quad \Longleftrightarrow \quad \phi' \in H^p \qquad \qquad \left(p = \frac{2(1+\beta)}{2+\beta}\right)$$

Moreover, if $s_n(H_{\overline{z}}) \sim \frac{c}{n^{\frac{1}{p}}}$ then $s_n(H_{\overline{b}}) \sim \frac{c}{n^{1/p}} \|\phi'\|_p$.

In the case of the classical Bergman space A^2 ($\alpha = 0$).

- M. Dostanic (2004) proved that if ϕ is analytic in a neighborhood of $\overline{\mathbb{D}}$, then $s_n(H_{\overline{\phi}}) \sim \frac{\|\phi'\|_1}{n}$.
- Englis and Rochberg (2009) proved that if $\phi' \in H^1$, then $H_{\overline{\phi}}$ is in the Dixmier class and that the Dixmier trace is given by

$$\mathrm{Tr}(|H_{\overline{\phi}}|) = \|\phi'\|_1.$$

(日)

The proof uses some ideas of M. Dostanic's proof, a result on asymptotic spectral orthogonality due to Birman and Solomyak (see the paper by A. Pushnitski : Spectral asymptotics for Toeplitz operators and an application to banded matrices, (2018)) and the theorem of trace estimates of Hankel operators.

Thank you for your attention.